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As processors have become faster over the years, the cost of a prototypical “computing” op-
eration, such as a floating point addition, has diminished to a negligible quantity. On the other
hand, the cost of communicating data has become proportionately higher. For example, even on a
high-end supercomputer, it takes less than a quarter nanosecond (amortized, in a pipelined unit)
for a floating point addition, 50 ns to access DRAM memory, and thousands of nanoseconds to
receive data from another node. If one considers energy, the comparison is also stark: currently, a
floating point operation costs 30-45 picojoules (pJ), an off-chip 64-bit memory access costs 128 pJ,
and remote data access over the network costs between 128 and 576 pJ [1].

IBM Cray

Blue Gene/L 0.375 XT3 8.77
Blue Gene/P 0.375 XT4 1.36
Blue Gene/Q 0.117 XT5 0.23

Table 1: Byte-to-flop ratios

In addition to faster processors, the increasing number
of cores per node is stressing the memory and interconnect
further. It is common knowledge that the memory bandwidth
on node has not kept pace with the increased processing power
on the node. The comparison of network bandwidth with
floating point operation (flop) counts is similar. Table 1 shows
the number of bytes the network can accept for each flop on
the node (B-to-F ratio, byte/flop) for different machines. Newer generations of IBM and Cray
machines have more cores and more flop/s on each node, but the network bandwidth has not
increased in proportion. As a result, for each flop on the node, the network is able to communicate
fewer and fewer bytes. It is clear that the cost of communication (in terms of time, silicon area, and
energy) will become the critical issue in coming years and, eventually, the primary determinant of
overall performance. In order to optimize communication and overall application performance and
reduce energy costs, it is imperative to optimize data movement, both on-node and off-node.

Typically, application developers attempt to minimize off-socket and off-node communication
through graph partitioning of the application domain. However, given a partitioned domain, the
“mapping” or assignment of sub-domains/communicating tasks in this graph to the underlying on-
node and network topology is often neglected. Topology aware task mapping involves embedding
the partitioned graph of communicating tasks of a parallel application within the node and network
topology, to optimize for performance, power (i.e., data motion), or other objectives. In the last
ten years, several applications [2, 3, 4, 5] have developed their own hand-tuned mapping algorithms
and mechanisms to optimize communication. Several libraries have also been developed to create
mappings for torus interconnects [6, 7, 8, 9]. Even so, an application developer has to spend
significant time and effort to formulate efficient mappings for his code.

As we move to exascale, we face complex on-node and off-node interconnect topologies. Auto-
matic intelligent mapping by the runtime with assistance from the OS and resource manager will be
necessary to achieve good performance. Below, we describe the major challenges and requirements
from the resource manager, operating system and runtime for dynamic topology aware mapping:

Topology aware job scheduling: Only 6% of the top500 machines (primarily the IBM Blue
Gene series) provide contiguous cuboidal partitions for their jobs. This is the primary requirement
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for achieving any benefit from mapping of application tasks to the network topology. If the allo-
cated nodes for a job are sprinkled all over the machine, factors such as network interference from
other jobs and I/O are outside the control of each job. A careful consideration of the significant
performance benefits from contiguous job partitions versus higher overall system utilization from
random node allocations is necessary to understand the tradeoffs.

API standard for topology discovery: Mapping at runtime requires knowledge of the topology
of the allocation job partition. This information is available through data structures such as
BGPPersonality on Blue Gene/P, the MPIX interface on Blue Gene/Q, through PMI and RCA calls
on Cray machines and using ibnetdiscover on Infiniband machines. Partial on-node topology and
memory hierarchy is available through the hwloc library. All of these interfaces are different and
only some of them can be used at runtime. An industry standard needs to be established and the
vendors should ensure that the OS supports a commonly agreed upon topology discovery API that
can be used by the runtime for mapping.

Scalable API for application communication graph: The application should be able to
specify its communication graph and this information can be exploited by the runtime to map tasks
to the underlying network topology (e.g. routines such as MPI Cart create and MPI Graph create

in the MPI runtime). However, these routines are no-ops and the MPI runtime does not map its
processes to the underlying network topology even if the application describes its communication
using these. Future runtime(s) should provide topology aware implementations of such routines
that map the application graph on the physical hardware efficiently. This requires research on
scalable mapping algorithms (see below).

Scalable mapping algorithms: Even though several libraries have been developed to tackle the
mapping problem, either the solutions are very generic (and hence not optimal for all problems) or
too specific to a particular application. Significant research is required in tackling this NP-hard [10]
problem to develop scalable mapping algorithms that cover most common cases. Research is also
needed in developing metrics to predict performance of the application with different mappings
and in understanding on-node memory contention and off-node network congestion. The mapping
algorithms need to be deployed in the runtime to create the best possible mapping of application
tasks to the on-node and off-node topology. Automated mapping by the runtime for optimizing
memory accesses on NUMA multi-cores has not received much attention so far [11].

Migration of tasks at runtime: Currently, the mapping of MPI applications can only be changed
when a job is launched (given prior knowledge of the application communication graph and the
shape of the partition). Most parallel applications have several phases, with varied communication
patterns and network behavior. An initial mapping decided at program start-up might not be
optimal for the entire execution. At exascale, in the face of adaptivity, asynchrony and dynamic
load imbalance, we will require dynamic task migration (that is also topology-aware). Only a few
runtimes such as Charm++ [12] have the capability to migrate tasks at runtime. This will be a
much desired feature in runtimes of the future.

If the HPC (OS and runtime) community can agree on these five facets/requirements of task
mapping described above and we spend significant effort on this research, only then there is hope
for near-optimal communication efficiency in exascale applications.

The cost of communication (in terms of time, silicon area, and energy) will become the critical
issue in coming years and, eventually, the primary determinant of overall performance. In order
to optimize communication and overall application performance and reduce energy costs, it is
imperative to maximize data locality and minimize data movement, both on-node and off-node.
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